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Non-monotone methods Subspace Summar

Why this topic

m In large scale real problems, the techniques are crucial for the efficiency
of algorithms.

m Many engineers did not pay much attention to optimization techniques.
m Interests of the audience.

Non-monotone methods

Subspace methods

Inexact methods (For example, Truncated Newton method)
Penalty methods

We mainly focus on the first two kinds of techniques.



Non-monotone methods

What is non-monotone method and Why

What is non-monotone method

m In monotone methods, Xk, is always “better” than x.

® non-monotone methods do not need xx, ¢ “better” than xi, but good on
some aspects.

Why non-monotone method

m monotone is too conservative.
m monotone is too sensitive to the initial point.
E non-monotone may jump out from the local minimum.



Non-monotone methods

« Minimum Point f(1,1)=0.0

Figure: Rosenbroke Function

f(x,y) = (1 =x)®+100(y — x*)?
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Non-monotone methods

Monotone Line Search

Each iteration computes a search direction di and then decides how far to
move along this direction.
X1 = Xk + axdy )

ay is called step length. Three conditions are widely used in line search.
f(Xk + (kak) < f(Xk) + G akadek
Vf(Xk + (Xkdk)Tdk > Cgidek
|Vf(Xk + akdk)Tdkl < Cz|kaTdk|
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® Armijo line search : (3)
m Wolfe line search : (3) & (4)
m strong Wolfe line search : (3) & (5)



Non-monotone methods

Non-monotone Line Search

quasi-Newton method without line search

Xkp1 = Xk + Hedk = X — H Vi (6)
Hi satisfies quasi-Newton condition ( secant condition ) :

Heyk = s or  H'se = yi (7)

where y, = Vi — Vfi_y and Sk = Xx — Xk_1-
We choose a step length « instead of Hj with similar property :

. 1
min llaxyx — skl or  min |Iask = Yill (8)
s] yi s! s,
ok = l;_ or ax = ;;_ (9)
yk Yk Sk Yk



Non-monotone methods

Non-monotone Line Search (Cont.)

Barzilai-Borwein method is as fast as many traditional methods in theory, but
faster in practice.
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Non-monotone methods

Non-monotone Line Search (Cont.)

Another way is to slightly change the Armijo line search condition to some
formula like
f(Xk + a/kdk) < Zx + ¢ akadek. (10)

Z is objective function value of previous iteration, or average objective
function value of previous iterations.
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Non-monotone methods

Trust Region Methods

In each iteration, we solve a approximation subproblem with an extra
constraint to obtain xx1:

[IX — Xkl < Ak (11)
Ay is a scalar, which is called Trust Region Radius. We define
_ Descent of Original Problem  f(x) — f(Xk11) (12)
Pk = "Descent of Subproblem m(xx) — Mk (Xks1)’

where f(x) is the original objective function and m(x) is the objective function
of subproblem.

In general, we accept xi.1 if and only if px = 1 > 0 (1 is a given parameter),
otherwise we adjust trust region radius. This makes our method monotone.



Non-monotone methods

Non-monotone Trust Region

Non-monotone trust region methods have different ways to define p, or n, but
the key point is the same.

m possible to accept xx,1 when worse than x.
B X1 iS better than previous several iterates on some aspects.
This two criterion make our method non-monotone but convergence.
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This technique is also successfully applied to petroleum and petrochemical
planning system.

10/15



Subspace Methods

What is subspace method and Why

What is subspace method

Optimal solution in a large space
— A sequence of optimal or nearly optimal solutions in subspaces

Why subspace method

m The original problem is too difficult to solve.

m Very easy to find an optimal or nearly optimal solution in some special
subspaces.

m In real problems, prior knowledge tells us the subspaces.
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Subspace Methods

Subspace Methods

Subspace techniques are suitable for large scale problems.
There are ideas of subspace in many standard optimization methods.

m The step of gradient method is in one dimensional space Span{Vf}.
Xkp1 = Xk — ax Vi (13)

m The step of conjugate gradient method is in two dimensional space
Span{Vfy, dk-1}.

Xyt = Xk + axdy = X + ax(=Vik + Brdk1) (14)

m The step of limited memory quasi-Newton algorithms is in 2m + 1
dimensional space Span{Vfx, Sk, ..., Skemi1> Yk -+ -» Ykmii}
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Subspace Methods

Subspace Methods (Cont.)

A model subspace algorithm for unconstrained optimization.
Step 1 Given x;, define Sy, Q;(d), e > 0, k := 1.
Step 2 Solve a subspace subproblem:

min Qx(d) (15)

deSy

obtaining dk. If ||dk|| < e then stop.
Step 3 Carry out line search to obtain ax > 0, set

Xk+1 = Xk + Ak (16)

Step 4 Generate Sy 1 and Qx.(d).
Step5 k:=k+ 1, go to Step 2.

Qx(d) is often chosen as an approximation to the original objective function.
Sy is the subspace. The search direction d is the “best” in subspace S.
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Subspace Methods

Subspace Methods (Cont.)

m To choose di in a small subspace is easy, but di performs bad (for
example, Span{Vf}).

m To choose d in a large subspace is hard, but dx performs better (for
example, the whole space).

References

m Y.X. Yuan, Subspace techniques for nonlinear optimization, in: Some
Topics in Industrial and Applied Mathematics, volume 8 of Series on
Concrete and Applicable Mathematics, pp. 206-218, Higher Education
Press, Beijing, 2007.

m Y.X. Yuan, Subspace methods for large scale nonlinear equations and
nonlinear least squares, Optimization and Engineering, 10(2): 207-218,
2009.

m Z.K. Zhang, Subspace technique in derivative-free optimization methods,
chapter 5 of On Derivative-Free Optimization Methods, PhD thesis.

14/15



Summary

Summary

m Non-monotone methods performs well in some real problems. Some of
them have convergence theory for a large family of functions, but others
are not.

m Subspace methods are powerful tools to deal with large scale problems.
However, it is not easy to choose a good subspace.

m Some methods without nice convergence property perform better
(maybe no one knows why), but the methods with convergence property
are more robust.

m How to find methods with fast convergence property and also fast in
practice ?
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