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Why this topic

In large scale real problems, the techniques are crucial for the efficiency
of algorithms.

Many engineers did not pay much attention to optimization techniques.

Interests of the audience.

Techniques

Non-monotone methods

Subspace methods

Inexact methods (For example, Truncated Newton method)

Penalty methods

...

We mainly focus on the first two kinds of techniques.
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What is non-monotone method and Why

What is non-monotone method

In monotone methods, xk+1 is always “better” than xk .

non-monotone methods do not need xk+1 “better” than xk , but good on
some aspects.

Why non-monotone method

monotone is too conservative.

monotone is too sensitive to the initial point.

non-monotone may jump out from the local minimum.
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Figure: Rosenbroke Function

f (x , y) = (1 − x)2 + 100(y − x2)2 (1)
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Monotone Line Search

Each iteration computes a search direction dk and then decides how far to
move along this direction.

xk+1 = xk + αk dk (2)

αk is called step length. Three conditions are widely used in line search.

f (xk + αk dk ) ≤ f (xk ) + c1αk∇f T
k dk (3)

∇f (xk + αk dk )T dk ≥ c2∇f T
k dk (4)

|∇f (xk + αk dk )T dk | ≤ c2|∇f T
k dk | (5)

Armijo line search : (3)

Wolfe line search : (3) & (4)

strong Wolfe line search : (3) & (5)
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Non-monotone Line Search

quasi-Newton method without line search

xk+1 = xk + Hk dk = xk − Hk∇fk (6)

Hk satisfies quasi-Newton condition ( secant condition ) :

Hk yk = sk or H−1
k sk = yk (7)

where yk = ∇fk − ∇fk−1 and sk = xk − xk−1.
We choose a step length αk instead of Hk with similar property :

min ‖αk yk − sk ‖ or min ‖
1
αk

sk − yk ‖ (8)

αk =
sT

k yk

yT
k yk

or αk =
sT

k sk

sT
k yk

(9)
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Non-monotone Line Search (Cont.)

Barzilai-Borwein method is as fast as many traditional methods in theory, but
faster in practice.

References

J. Barzilai & J. M. Borwein, Two point step size gradient methods, IMA
Journal of Numerical Analysis, 8(1): 141-148, 1988

Y.H. Dai & L.Z. Liao, R-linear convergence of the Barzilai and Borwein
gradient method, IMA Journal of Numerical Analysis, 22(1): 1-10, 2002

Y.F. Wang & S.Q. Ma, Projected Barzilai-Borwein method for large-scale
nonnegative image restoration, Inverse Problems in Science and
Engineering, 15(6): 559-583, 2007.
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Non-monotone Line Search (Cont.)

Another way is to slightly change the Armijo line search condition to some
formula like

f (xk + αk dk ) ≤ Zk + c1αk∇f T
k dk . (10)

Zk is objective function value of previous iteration, or average objective
function value of previous iterations.

References

L. Grippo, F. Lampariello & S. Lucidi, A nonmonotone line search
technique for Newton’s method, SIAM Journal of Numerical Analysis,
23(1): 707-716, 1986.

H.C. Zhang & W. Hager, A nonmonotone line search technique and its
application to unconstrained optimization, SIAM Journal of Optimization,
14(4): 1043-1056, 2004.
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Trust Region Methods

In each iteration, we solve a approximation subproblem with an extra
constraint to obtain xk+1:

‖x − xk ‖ ≤ ∆k (11)

∆k is a scalar, which is called Trust Region Radius. We define

ρk =
Descent of Original Problem

Descent of Subproblem
=

f (xk ) − f (xk+1)

mk (xk ) −mk (xk+1)
, (12)

where f (x) is the original objective function and m(x) is the objective function
of subproblem.
In general, we accept xk+1 if and only if ρk ≥ η > 0 (η is a given parameter),
otherwise we adjust trust region radius. This makes our method monotone.
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Non-monotone Trust Region

Non-monotone trust region methods have different ways to define ρk or η, but
the key point is the same.

possible to accept xk+1 when worse than xk .

xk+1 is better than previous several iterates on some aspects.

This two criterion make our method non-monotone but convergence.

References

N.Y. Deng, Y. Xiao and F.J. Zhou, Non-monotonic trust region algorithms,
Journal of Optimization Theory and Applications 76(2): 259-285, 1993.

P.L. Toint, Non-monotone trust-region algorithms for nonlinear
optimization subject to convex constraints, Mathematical Programming
77(3): 69-94, 1997.

This technique is also successfully applied to petroleum and petrochemical
planning system.

10 / 15



Non-monotone methods Subspace Methods Summary

What is subspace method and Why

What is subspace method

Optimal solution in a large space
→ A sequence of optimal or nearly optimal solutions in subspaces

Why subspace method

The original problem is too difficult to solve.

Very easy to find an optimal or nearly optimal solution in some special
subspaces.

In real problems, prior knowledge tells us the subspaces.
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Subspace Methods

Subspace techniques are suitable for large scale problems.
There are ideas of subspace in many standard optimization methods.

The step of gradient method is in one dimensional space Span{∇fk }.

xk+1 = xk − αk∇fk (13)

The step of conjugate gradient method is in two dimensional space
Span{∇fk ,dk−1}.

xk+1 = xk + αk dk = xk + αk (−∇fk + βk dk−1) (14)

The step of limited memory quasi-Newton algorithms is in 2m + 1
dimensional space Span{∇fk , sk , . . . , sk−m+1, yk , . . . , yk−m+1}
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Subspace Methods (Cont.)

A model subspace algorithm for unconstrained optimization.

Step 1 Given x1, define S1, Q1(d), ε > 0, k := 1.

Step 2 Solve a subspace subproblem:

min
d∈Sk

Qk (d) (15)

obtaining dk . If ‖dk ‖ ≤ ε then stop.

Step 3 Carry out line search to obtain αk > 0, set

xk+1 = xk + αk dk (16)

Step 4 Generate Sk+1 and Qk+1(d).

Step 5 k := k + 1, go to Step 2.

Qk (d) is often chosen as an approximation to the original objective function.
Sk is the subspace. The search direction dk is the “best” in subspace Sk .
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Subspace Methods (Cont.)

To choose dk in a small subspace is easy, but dk performs bad (for
example, Span{∇f }).

To choose dk in a large subspace is hard, but dk performs better (for
example, the whole space).

References

Y.X. Yuan, Subspace techniques for nonlinear optimization, in: Some
Topics in Industrial and Applied Mathematics, volume 8 of Series on
Concrete and Applicable Mathematics, pp. 206-218, Higher Education
Press, Beijing, 2007.

Y.X. Yuan, Subspace methods for large scale nonlinear equations and
nonlinear least squares, Optimization and Engineering, 10(2): 207-218,
2009.

Z.K. Zhang, Subspace technique in derivative-free optimization methods,
chapter 5 of On Derivative-Free Optimization Methods, PhD thesis.
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Summary

Non-monotone methods performs well in some real problems. Some of
them have convergence theory for a large family of functions, but others
are not.

Subspace methods are powerful tools to deal with large scale problems.
However, it is not easy to choose a good subspace.

Some methods without nice convergence property perform better
(maybe no one knows why), but the methods with convergence property
are more robust.

How to find methods with fast convergence property and also fast in
practice ?
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