Techniques for Optimization Methods in Applications

Rui Diao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

August 31, 2013

Why this topic

- In large scale real problems, the techniques are crucial for the efficiency of algorithms.
- Many engineers did not pay much attention to optimization techniques.
- Interests of the audience.

Techniques

· · · ·

- Non-monotone methods
- Subspace methods
- Inexact methods (For example, Truncated Newton method)
- Penalty methods

We mainly focus on the first two kinds of techniques.

What is non-monotone method and Why

What is non-monotone method

- In monotone methods, x_{k+1} is always "better" than x_k .
- non-monotone methods do not need x_{k+1} "better" than x_k, but good on some aspects.

Why non-monotone method

- monotone is too conservative.
- monotone is too sensitive to the initial point.
- non-monotone may jump out from the local minimum.

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$
(1)

Monotone Line Search

Each iteration computes a search direction d_k and then decides how far to move along this direction.

$$x_{k+1} = x_k + \alpha_k d_k \tag{2}$$

 α_k is called step length. Three conditions are widely used in line search.

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le f(\mathbf{x}_k) + \mathbf{c}_1 \alpha_k \nabla f_k^T \mathbf{d}_k$$
(3)

$$\nabla f(\mathbf{x}_k + \alpha_k \mathbf{d}_k)^T \mathbf{d}_k \ge \mathbf{c}_2 \nabla f_k^T \mathbf{d}_k \tag{4}$$

$$|\nabla f(\mathbf{x}_k + \alpha_k \mathbf{d}_k)^T \mathbf{d}_k| \le c_2 |\nabla f_k^T \mathbf{d}_k|$$
(5)

- Armijo line search : (3)
- Wolfe line search : (3) & (4)
- strong Wolfe line search : (3) & (5)

Non-monotone Line Search

quasi-Newton method without line search

m

$$x_{k+1} = x_k + H_k d_k = x_k - H_k \nabla f_k \tag{6}$$

 H_k satisfies quasi-Newton condition (secant condition):

$$H_k y_k = s_k \quad \text{or} \quad H_k^{-1} s_k = y_k \tag{7}$$

where $y_k = \nabla f_k - \nabla f_{k-1}$ and $s_k = x_k - x_{k-1}$. We choose a step length α_k instead of H_k with similar property :

$$\min \|\alpha_k y_k - s_k\| \quad \text{or} \quad \min \|\frac{1}{\alpha_k} s_k - y_k\|$$

$$\alpha_k = \frac{s_k^T y_k}{y_k^T y_k} \quad \text{or} \quad \alpha_k = \frac{s_k^T s_k}{s_k^T y_k}$$
(9)

・ロット(型)・(型)・(ロ)・
 ・(型)・(型)・(ロ)・
 ・(15)

Non-monotone Line Search (Cont.)

Barzilai-Borwein method is as fast as many traditional methods in theory, but faster in practice.

References

- J. Barzilai & J. M. Borwein, Two point step size gradient methods, IMA Journal of Numerical Analysis, 8(1): 141-148, 1988
- Y.H. Dai & L.Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, 22(1): 1-10, 2002
- Y.F. Wang & S.Q. Ma, Projected Barzilai-Borwein method for large-scale nonnegative image restoration, Inverse Problems in Science and Engineering, 15(6): 559-583, 2007.

Non-monotone Line Search (Cont.)

Another way is to slightly change the Armijo line search condition to some formula like

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le \mathbf{Z}_k + \mathbf{c}_1 \alpha_k \nabla f_k^T \mathbf{d}_k.$$
(10)

 Z_k is objective function value of previous iteration, or average objective function value of previous iterations.

References

- L. Grippo, F. Lampariello & S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal of Numerical Analysis, 23(1): 707-716, 1986.
- H.C. Zhang & W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal of Optimization, 14(4): 1043-1056, 2004.

Trust Region Methods

In each iteration, we solve a approximation subproblem with an extra constraint to obtain x_{k+1} :

$$\|\mathbf{x} - \mathbf{x}_k\| \le \Delta_k \tag{11}$$

 Δ_k is a scalar, which is called Trust Region Radius. We define

$$\rho_k = \frac{\text{Descent of Original Problem}}{\text{Descent of Subproblem}} = \frac{f(x_k) - f(x_{k+1})}{m_k(x_k) - m_k(x_{k+1})},$$
 (12)

where f(x) is the original objective function and m(x) is the objective function of subproblem.

In general, we accept x_{k+1} if and only if $\rho_k \ge \eta > 0$ (η is a given parameter), otherwise we adjust trust region radius. This makes our method monotone.

Non-monotone Trust Region

Non-monotone trust region methods have different ways to define ρ_k or η , but the key point is the same.

- **possible to accept** x_{k+1} when worse than x_k .
- x_{k+1} is better than previous several iterates on some aspects.

This two criterion make our method non-monotone but convergence.

References

- N.Y. Deng, Y. Xiao and F.J. Zhou, Non-monotonic trust region algorithms, Journal of Optimization Theory and Applications 76(2): 259-285, 1993.
- P.L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Mathematical Programming 77(3): 69-94, 1997.

This technique is also successfully applied to petroleum and petrochemical planning system.

What is subspace method and Why

What is subspace method

Optimal solution in a large space

 \rightarrow A sequence of optimal or nearly optimal solutions in subspaces

Why subspace method

- The original problem is too difficult to solve.
- Very easy to find an optimal or nearly optimal solution in some special subspaces.
- In real problems, prior knowledge tells us the subspaces.

Subspace Methods

Subspace techniques are suitable for large scale problems.

There are ideas of subspace in many standard optimization methods.

The step of gradient method is in one dimensional space $\text{Span}\{\nabla f_k\}$.

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f_k \tag{13}$$

The step of conjugate gradient method is in two dimensional space $\text{Span}\{\nabla f_k, d_{k-1}\}.$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k = \mathbf{x}_k + \alpha_k (-\nabla f_k + \beta_k \mathbf{d}_{k-1})$$
(14)

The step of limited memory quasi-Newton algorithms is in 2m + 1 dimensional space Span{ $\nabla f_k, s_k, \dots, s_{k-m+1}, y_k, \dots, y_{k-m+1}$ }

◆□ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ 12/15

Subspace Methods (Cont.)

A model subspace algorithm for unconstrained optimization.

Step 1 Given
$$x_1$$
, define S_1 , $\overline{Q}_1(d)$, $\epsilon > 0$, $k := 1$.

Step 2 Solve a subspace subproblem:

$$\min_{d \in \mathcal{S}_k} \overline{Q}_k(d) \tag{15}$$

obtaining d_k . If $||d_k|| \le \epsilon$ then stop.

Step 3 Carry out line search to obtain $\alpha_k > 0$, set

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k \tag{16}$$

Step 4 Generate S_{k+1} and $Q_{k+1}(d)$.

Step 5 k := k + 1, go to Step 2.

 $Q_k(d)$ is often chosen as an approximation to the original objective function. S_k is the subspace. The search direction d_k is the "best" in subspace S_k .

Subspace Methods (Cont.)

- To choose *d_k* in a small subspace is easy, but *d_k* performs bad (for example, Span{∇*f*}).
- To choose d_k in a large subspace is hard, but d_k performs better (for example, the whole space).

References

- Y.X. Yuan, Subspace techniques for nonlinear optimization, in: Some Topics in Industrial and Applied Mathematics, volume 8 of Series on Concrete and Applicable Mathematics, pp. 206-218, Higher Education Press, Beijing, 2007.
- Y.X. Yuan, Subspace methods for large scale nonlinear equations and nonlinear least squares, Optimization and Engineering, 10(2): 207-218, 2009.
- Z.K. Zhang, Subspace technique in derivative-free optimization methods, chapter 5 of On Derivative-Free Optimization Methods, PhD thesis.

Summary

- Non-monotone methods performs well in some real problems. Some of them have convergence theory for a large family of functions, but others are not.
- Subspace methods are powerful tools to deal with large scale problems. However, it is not easy to choose a good subspace.
- Some methods without nice convergence property perform better (maybe no one knows why), but the methods with convergence property are more robust.
- How to find methods with fast convergence property and also fast in practice ?